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1. Introduction

Supergravity solutions with non-zero fluxes play an important role in any attempt to recover

4-dimensional physics from string theory, from string compactifications to the AdS/CFT

correspondence. In the presence of type II Ramond-Ramond and/or Neveu-Schwarz fluxes,

the internal six dimensional geometry back-reacts and is typically not Ricci-flat. In the

last few years many attempts have been done to find a geometrical characterization of

the internal manifolds analogue to the well-known Calabi-Yau condition in the absence

of fluxes. The formalisms of G-structures and Generalised Complex Geometry have led

to some progress in this direction. When applied to the AdS/CFT correspondence, the

formalism of G-structures leads to a classification of the geometrical structure of known

solutions but, more interestingly, can also be used to find new solutions.

The most elegant and best studied case is that of the structure group G being SU(3).

In this case it is possible to give a set of general conditions in order for the solutions to be

N = 1 supersymmetric and a full classification of these backgrounds is known: in type IIB

the manifold has to be complex, while in type IIA it has to be twisted symplectic [1]. The

geometry is fully characterized by a real two-form and a complex three-form. One of the

two invariant forms (the two-form in IIA and the three-form in IIB) is conformally closed,
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while the non-closure of the other cancels against the fluxes. The use of SU(3) structure

allows to formulate the conditions for N = 1 supersymmetry in a way [1, 2] which makes

the task of finding explicit solutions easier. And this turned out to be particularly useful

in the context of AdS/CFT correspondence. In [3] a family of regular SU(3)-structure

equations was found describing the baryonic branch of the Klebanov-Strassler solution [4].

Less can be said about the case of SU(2) structure solutions (which in addition to

the above mentioned forms admit a nowhere-vanishing vector field) where the considerable

number of representations in the torsions and fluxes makes the analysis using G-structures

less powerful. In particular, it has been shown that IIB backgrounds with SU(2) structure

are no longer required to be complex in order to preserve supersymmetry [5]. In the context

of the AdS/CFT correspondence various important solutions are characterized by SU(2)

structures. In fact, while conformal backgrounds of the form AdS5 × H, with H a Sasaki-

Einstein manifold, and the corresponding non conformal backgrounds obtained by adding

fractional branes are described by SU(3) structures, massive and marginal deformations of

these conformal theories are typically characterized by SU(2) structures and their geometry

is still poorly understood. It is one of the purposes of this paper to start a detailed

analysis of the conditions of supersymmetry related to SU(2) structures. Having in mind

applications to the AdS/CFT correspondence, we will consider the case of type IIB solutions

with non compact internal manifolds. However, the geometrical characterization of the

SU(2) backgrounds described in this paper also have applications to the compact case.

We will make use of the language of Generalised Complex Geometry (GCG), which is

a convenient conceptual framework for describing the N = 1 geometries. The basic objects

here are pure spinors, formal sums of even or odd forms, whose existence imposes certain

topological conditions on the sum of the tangent and cotangent bundles of the internal

manifold. In this language preservation of N = 1 supersymmetry reduces to a pair of

differential conditions on the pure spinors which are somewhat schematically:

dHΦ− = 0 , (1.1)

dHΦ+ = ∗F . (1.2)

Here Φ+ (Φ−) is the even (odd) pure spinor and F is the formal sum of all RR fluxes.

We will give their explicit expressions in section 2. It is important that the pure spinors

satisfy algebraic compatibility conditions in order to define a Riemannian metric on the

internal space. Manifolds admitting a closed pure spinor (which as we see is one of the

necessary conditions for N = 1 supersymmetry) are called Generalized Calabi-Yau (GCY)

manifolds.

In this paper we discuss the supersymmetry equations (and Bianchi identities) for a

particularly interesting class of SU(2)-structure backgrounds. We will show that with a

particular ansatz for the supersymmetry spinors the conditions for N = 1 supersymmetry

give a very simple set of equations for the SU(2) invariant forms and the fluxes. As

all SU(2) structure backgrounds, these solutions are characterized by the existence of a

conformally closed vector. In addition to that, even if the metric is not Kähler, it is possible

to define a modified (1,1)-form which is conformally closed. We will show that two well
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known solutions in the context of the AdS/CFT correspondence, the Pilch-Warner solution

(PW) [6], describing a massive deformation of N = 4 SYM with an IR fixed point, and the

Lunin-Maldacena (LM) [7], describing the marginal β-deformation of N = 4 SYM, belong

to this class of backgrounds. More generally, we expect to be able to characterize in terms

of these special SU(2) structure all other warped AdS5 solutions with fluxes corresponding

to (IR limits of) massive deformations and β-deformations of conformal field theories 1.

In this paper we will be mostly concerned with AdS5 solutions, but our equations have

applications to non conformal solutions as well. One particularly important case of non

conformal backgrounds which should belong to the special class of solutions considered in

this paper is given by the general massive deformations of N = 4 SYM, N = 1∗.

We will also study in detail the introduction of D3-brane probes in the GCY back-

grounds. The analysis of the supersymmetry conditions for a probe determines a (possibly

empty) sub-variety of the internal manifold that is in correspondence with the (mesonic)

moduli space of vacua of the dual gauge theory. We will show that all supergravity solu-

tions dual to a gauge theory with a non trivial moduli space of vacua necessarily belong to

the special class of SU(2) structures considered here.

The paper is organized as follows. In section 2, we review the geometrical characteri-

zation of SU(2) structure backgrounds and we introduce the general tools that will be used

in the rest of the paper. In section 3 we specialize to a particular spinorial ansatz and we

write a very simple set of equations involving the SU(2) invariant forms and the fluxes. In

section 4 we discuss the geometry of the PW flow and the massive deformations of confor-

mal theories. We generalize a very simple class of type IIB supersymmetric solutions found

in [8]: a class of complex manifolds and associated fluxes which solve the supersymmetry

conditions of type IIB and are completely characterized by the existence of a generalized

Kähler potential. These backgrounds can be used to describe massive flows to IR fixed

points. In this context we give some general conditions specifying AdS5 solutions. In sec-

tion 5 we discuss the geometry of the LM solutions and of (marginal) β-deformations of

conformal theories. We show that quite generally the action of T-duality on a Calabi-Yau

background leads to an SU(2) structure of the special case considered in this paper. Fi-

nally, appendix A contains the set of supersymmetry conditions for the most general SU(2)

structure ansatz and appendix B collects the formulae for the T-duality which are used for

the LM solution.

2. SU(2) structure backgrounds

In this paper we are interested in solutions of IIB supergravity of warped type

ds2 = e2Ads2
4 + ds2

6 , (2.1)

where the internal manifold has SU(2) structure.

1A general set of equations for AdS5 solutions in type IIB supergravity have been written in [9].
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An SU(2) structure manifold is characterized by the existence of two globally defined

never-vanishing spinors which are never parallel

η+ χ+ =
1

2
z · η− , (2.2)

where η− is the complex conjugate of η+ and z· denotes the Clifford multiplication by the

one-form zmγm.

Consequently the ten-dimensional supersymmetry parameters can be written as

ε1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

− ,

ε2 = ζ+ ⊗ η2
+ + ζ− ⊗ η2

− ,
(2.3)

where ζ± is a 4d chiral spinor (ζ∗+ = ζ−) and the 6d chiral spinors η
(i)
± are related to the

SU(2) structure spinors by

η1+ = aη+ + bχ+ ,

η2 + = xη+ + yχ+ ,
(2.4)

with a, b, x and y complex functions on the internal manifold. For the familiar SU(3)

structure case corresponding to a Calabi-Yau manifold one has x = −ia and b = y = 0.

An alternative definition of SU(2) structure which will be useful in the following is

given in terms of globally defined never-vanishing bilinears in the spinors (2.2)

z = −2χ†
−γmη+dxm , (2.5)

j =
i

2
χ†

+γmnχ+dxm ∧ dxn − i

2
η†+γmnη+dxm ∧ dxn , (2.6)

ω = −iχ†
+γmnη+dxm ∧ dxn . (2.7)

Here z is a complex 1-form, j and ω a real 2-form and a complex (2,0)-form satisfying

ω ∧ j = 0 , (2.8)

j2 =
1

2
ω ∧ ω̄ , (2.9)

zxj = zxω = 0 . (2.10)

Each of the spinors η+ and χ+ defines an almost complex structure compatible with

the metric. The associated (1,1)-forms are given by

J = − i

2
η†+γmnη+dxm ∧ dxn = +j +

i

2
z ∧ z̄ ,

J̃ = − i

2
χ†

+γmnχ+dxm ∧ dxn = −j +
i

2
z ∧ z̄ , (2.11)

respectively. More generally, the SU(2) structure determines an entire U(1) family of

almost complex structures compatible with the metric. The corresponding (1,1)-forms are

constructed in terms of the normalized spinor

ξ = cos δη + sin δχ (2.12)
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as Jξ = −(i/2)ξ†+γmnξ+dxm ∧ dxn.

As shown in [2], by tensoring the supersymmetry parameters on the internal manifold,

η1,2
± , it is possible to define formal sums of even and odd forms respectively

Φ+ = η1
+ ⊗ η2 †

+ , (2.13)

Φ− = η1
+ ⊗ η2 †

− (2.14)

which are interpreted as pure spinors of Cliff(6, 6) in the context of Generalised Complex

Geometry [10, 11].

For the choice of η1 and η2 in (2.4), the explicit form of the pure spinors reads

Φ+ =
1

8

[

ax̄e−ij + bȳeij − i(aȳω + x̄bω̄)
]

ezz̄/2 , (2.15)

Φ− =
1

8

[

i(byω̄ − axω) + (bxeij − aye−ij)
]

z . (2.16)

Following [2], one can check explicitly that both Φ+ and Φ− are annihilated by six combina-

tions of gamma-matrices and thus are pure. Since they have three annihilators in common,

they are also compatible. We would like to point out that the ansatz for the spinors and

consequently the form of the pure spinors are slightly different from those used in [2]. The

two choices are related by a rotation of SU(2) structure that sets b to zero in (2.4). The

form (2.15) seems to be more suitable to describe the type of spinor ansatz that appears

in the supergravity solutions dual to mass deformations that we want to analyze in this

paper. Notice also that, in this form, the limits where the two spinors η1,2 are always

parallel (SU(3) structure) and always orthogonal (SU(2) structure) are both smooth.

As already mentioned in the Introduction, the supersymmetry variations of the super-

gravity fermions can then be re-expressed as two equations for the two pure spinors

e−2A+φ(d − H∧)(e2A−φΦ−) = 0 ,

e−2A+φ(d − H∧)(e2A−φΦ+) = dA ∧ Φ̄+ +
eφ

16

(

a−FIIB − ia+ ∗ FIIB

)

, (2.17)

with FIIB = F1 + F3 + F5 and a± = |a|2 + |b|2 ± (|x|2 + |y|2). The functions a, b, x, y are

related to the norms of the pure spinors and satisfy

d(|a|2 + |b|2) = (|x|2 + |y|2) dA ,

d(|x|2 + |y|2) = (|a|2 + |b|2) dA .
(2.18)

By expanding into forms of definite degree, a set of necessary conditions for N = 1 solutions

can be derived. The complete set of equations corresponding to a generic ansatz (2.4) is

reported in appendix A.

The conditions for the existence of supersymmetric branes in a generalized Calabi-Yau

geometry have been studied in [12]. A general requirement is that the norms of the two

spinors η1,2 are equal. In our notations, this translates into a− = 0, which, combined

with (2.18), gives

(|a|2 + |b|2) = (|x|2 + |y|2) = eA . (2.19)
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This condition has to be satisfied by all backgrounds arising as the near horizon geometry

of systems of branes.

We will be interested in adding D-branes to the background, and, in particular, space-

time filling D3 branes. In the context of the AdS/CFT solutions that we will consider, a

supersymmetric D3 brane probes the (mesonic) moduli space of the dual gauge theory 2.

We are in fact interested in backgrounds which originate from a stack of N D3 branes. The

mesonic moduli space of vacua is in correspondence with the supersymmetric distributions

of N branes in different points of the internal manifold. In the familiar case of D3 branes

probing a singular Calabi-Yau cone (with dual background AdS5 × H, where H is the

Sasaki-Einstein base of the cone) the moduli space is just the symmetrized product of N

copies of the Calabi-Yau manifold. In more general deformed backgrounds, fluxes can alter

the supersymmetry conditions. In particular they can introduce a superpotential for the

probe that may reduce the moduli space.

The supersymmetric conditions for space-time filling Dp-brane can be expressed in

terms of the pure spinors (2.15) as [12]

Im(iΦ+) ∧ eF−B|top = 0 ,

((dxn + gnmιm)Φ−) ∧ eF−B|top = 0 , (2.20)

where F is the world-volume gauge field. These equations, in the case of a D3 brane,

become

Im(iΦ+)|(0) = 0 ,

Φ−|(1) = 0 , (2.21)

where Φ±|(k) denotes the k-form component of the spinor. The two constraints can be

interpreted as a D-term and an F-term conditions for the probe brane. For example, it has

been shown [12] that the superpotential for the probe brane is given by

dW = −ie2A−ϕΦ−|(1) =
i

8
e2A−ϕ(ay − bx)z . (2.22)

More explicitly, from equation (2.15) we obtain the D-term and an F-term conditions

for a supersymmetric D3 brane probe

Re(ax̄ + bȳ) = 0 , (2.23)

(bx − ay) = 0 . (2.24)

The conditions for supersymmetry (2.17) imply 3

d(eA−ϕ(ax̄ + bȳ)) = 0 . (2.25)

2It should be noted that, in general, beside the mesonic branch there may exist other vacua such as

baryonic flat directions or special non-abelian vacua related to a particular form of the superpotential.

These however are not interpreted as D3 branes moving in the internal manifold.
3Just take the real part of the one-form component of the equation for Φ+ – equation (A.4) in appendix

A.
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The quantity (ax̄ + bȳ) is therefore non-vanishing on the internal six-manifold. It follows

that the D-term condition (2.23) is satisfied either everywhere or nowhere. In the cases

where the condition (2.23) is not satisfied, the moduli space is empty. When (2.23) is

satisfied, the F-term condition (2.24) will select the sub-manifold where a supersymmetric

probe can freely move. This sub-manifold is in correspondence with the mesonic moduli

space of vacua of the dual gauge theory.

3. A class of SU(2) structures

In this paper we will focus on a specific form for the spinorial ansatz (2.4) which gives rise

to a particularly simple set of supersymmetry conditions.

We will consider the ansatz

η1+ = aη+ + bχ+ ,

η2+ = −i(aη+ − bχ+) , (3.1)

and, using equation (2.19), we will parametrize

a = ix = ieA/2 cos φ eiα , (3.2)

b = −iy = −ieA/2 sinφ eiβ . (3.3)

With this choice the supersymmetry conditions become very simple. Some of the

equations only contain the geometric data of the solution

d
(

e3A−ϕei(α+β) sin 2φz
)

= 0 , (3.4)

d
[

e2A−ϕ

(

j +
i

2
cos 2φz ∧ z̄

)

]

= 0 . (3.5)

The other equations mix the geometry and the fluxes

e−4A+ϕd
(

e4A−ϕ cos 2φ
)

= −eϕ ∗ F5 , (3.6)

e−4A+ϕd
(

e4A−ϕ sin 2φ Imω̂
)

= cos 2φH − eϕ ∗ F3 , (3.7)

[

d
(cos2 φω̂ + sin2 φ ¯̂ω

sin 2φ

)

+ iH
]

∧ z = 0 , (3.8)

e−2A+ϕd
(

e2A−ϕ sin 2φ Imω̂ ∧ z ∧ z̄
)

+ 2iH ∧ (j +
i

2
cos 2φz ∧ z̄) = 0 , (3.9)

e−4A+ϕd
[

e4A−ϕ
(

cos 2φ j2 + ij ∧ z ∧ z̄
)

]

+ 2 sin 2φH ∧ Imω̂ = eϕ ∗ F1 (3.10)

where ω̂ = ei(α−β)ω.

The geometrical conditions (3.4), (3.5) give the following description of the six-dimen-

sional internal space. It is convenient to define the Weyl rescaled six-dimensional metric

ds2
6 = e−2A+ϕds̃2

6 (3.11)
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which is the one seen by a D3 brane probing the background. The rescaled internal man-

ifold is characterized by a conformally closed vector z. In the almost complex structure

determined by η+, the metric is not Kähler, since dJ 6= 0. However the modified two-form

Ĵ = J − i sin2 φzz̄ = j +
i

2
cos 2φzz̄ (3.12)

is closed.

We can characterize our class of solutions as corresponding to the N = 1 backgrounds

with a nontrivial moduli space for D3-brane probes. This can be seen as follows. Given an

SU(2) solution corresponding to the spinor ansatz (2.4), we can still make a redefinition of

η+ as in (2.12). The only effect would be a redefinition of the almost complex structure

(alternatively a redefinition of J , or j, ω) we choose in order to write our equations. There

exist choices where the equations simplify. However, not every spinor ansatz (2.4) can be

reduced to the form considered in this section. A generic spinor ansatz (2.4) can be brought

to the form (3.1) by a redefinition of η+ if and only if

Re(ax̄ + bȳ) = 0 . (3.13)

Equation (3.13) is exactly the D-term condition for the existence of a moduli space

of vacua for probe D3 branes. We recall from the previous section that, for a generic

supersymmetric background, the condition (3.13) is satisfied in all points of the internal

manifold or nowhere. This means that the class of SU(2) structures we have just discussed

contains at least all N = 1 backgrounds admitting a non trivial mesonic moduli space of

vacua.

We can also consider the explicit form of the moduli space of vacua for this class of

SU(2) backgrounds. The F-term condition (2.24) simplifies to ab = 0 or

sin 2φ = 0 . (3.14)

This condition selects a (possibly empty) sub-manifold of the internal space corresponding

to the moduli space of supersymmetric vacua of the dual gauge theory.

4. Massive deformations of conformal gauge theories

An interesting class of SU(2) structure backgrounds is provided by the duals of massive

deformations of conformal gauge theories.

The typical example is N = 4 Super Yang-Mills to which we can add a general super-

symmetric mass deformation
∫

dθ2dx4mijΦiΦj . (4.1)

On the supergravity side the massive deformation corresponds to a non-zero value of the

complex 3-form G3 = F3−ie−ϕH. It is known that, by deforming N = 4 SYM with a mass

term for a single adjoint, the theory flows to a fixed point. This follows from a standard

argument due to Leigh and Strassler [13]. The deformed theory has a superpotential

gΦ3[Φ1,Φ2] + mΦ2
3 (4.2)
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which, after integrating out the massive field, becomes − g2

4m [Φ1,Φ2]
2. The conditions of

conformal invariance, corresponding to the vanishing of the beta-function and the require-

ment for the superpotential to have dimension three, combined with the obvious SU(2)

symmetry of the theory, require

∆Φ1,2
(g,m) =

3

4
. (4.3)

This equation for the parameters g and m determines a line of IR fixed points 4. The IR

conformal field theory has a complex two dimensional moduli space of vacua parametrized

by Φ1,2. The supergravity solution corresponding to this flow has been studied in [6] and

it will be referred to as the PW flow. It was originally obtained using five-dimensional

gauged supergravity and then lifted to ten dimensions. The PW solution is complex, with

constant dilaton and non trivial profile for the antisymmetric three-form fields of type IIB.

It reduces in the IR to a warped AdS background with three-form fluxes. At the IR fixed

point, the constant dilaton parametrizes the line of conformal field theories.

It has been shown in [8] that the supersymmetry parameter ε = ε1 + iε2 satisfies a

dielectric-like projection

ε = cos φΓ0123 ε + i sin φΓ0123xyε
∗ , (4.4)

where x, y are internal directions. Supersymmetry parameters in this class can be reduced

to the ansatz (3.1). A solution to the projection (4.4) is indeed given by a modification of

the supersymmetry parameter of the undeformed background, ε0 = ξ+ ⊗ η0
+,

ε = cos φε0 + iΓxy sin φε∗0 . (4.5)

Here η0 determines the complex structure of the undeformed background. In the case of

N = 4 SYM we are dealing with C
3; more generally, we may consider a Calabi-Yau cone

corresponding to an N = 1 superconformal gauge theory. In all cases, Γxy(η
0
+)∗ can be

rewritten as (z̄/2) · η0
+ for a suitable complex vector z. From equation (2.3) it follows that

η1
+ ∼ cos φη0

+ + sin φ
z

2
· η0

− ,

η2
− ∼ −i(cos φη0

+ − sin φ
z

2
· η0

−) , (4.6)

corresponding to the ansatz (3.1). Thus the mass deformation in the field theory selects

one complex direction in the internal space corresponding to the 1-form z.

The full flow from N = 4 to the LS fixed point is then described by an SU(2) structure

with a spinor ansatz of the form (3.1). In the following we will analyze in detail the

structure of the PW flow and, more generally, of deformations with three-form G induced

by a massive field. We will then specialize to the case of AdS5 backgrounds corresponding

to IR fixed points.

The ansatz (2.4) should cover more general cases of massive deformations dual to G3

fields which lead to non conformal theories in the IR. The dual backgrounds of massive

4Actually, if we break the SU(2) symmetry, we can find a larger manifold of fixed points.

– 9 –



J
H
E
P
1
2
(
2
0
0
6
)
0
5
5

N = 4 SYM are typically given by D3 branes dielectrically expanded into a D5 branes

via Myers effect [14]. The supersymmetry parameter should satisfy a projection similar

to (4.4), where the first term can be interpreted as the standard D3 brane projection and

the second as a D5 brane wrapping the x, y directions in the internal manifold.

4.1 A family of solutions of the supersymmetric conditions

In this section, we review and generalize a class of supersymmetric solutions of the equations

of motion of type IIB supergravity found by the group in USC [8]. This class of solutions is

particularly suited for the description of massive deformations of conformal theories. The

original solutions [8] were obtained for metrics with U(1)3 isometries; here we will extend

them to more general metrics so that they may be applied also to deformations of conformal

theories associated with non toric Calabi-Yau manifolds. We describe complex solutions of

the equations (3.4)-(3.10) that have at least one U(1) isometry corresponding to the gauge

theory R-symmetry and a constant dilaton corresponding to an exactly marginal direction

of the conformal theory. The only non-zero fluxes are the RR 5-form and the complex

3-form G3.

We will work with the rescaled six-dimensional metric we introduced in the previous

section (here the dilaton is set to zero)

ds2
6 = e−2Ads̃2

6 , (4.7)

so that all the quantities in eqs (3.4)-(3.10) are defined with respect to the metric ds̃2
6. The

equations for the geometrical data read

d
(

e2Aei(α+β) sin 2φz
)

= 0 , (4.8)

d
[

j +
i

2
cos 2φz ∧ z̄

]

= 0 . (4.9)

We have seen that there is a preferred complex direction in the internal manifold

specified by the conformally closed vector z. It is then natural to assume a four times

two-dimensional splitting of the internal manifold

ds2
6 = ηiAij η̄j + a3η3η̄3 , (4.10)

where the vielbein η3 is proportional to z

z =
√

a3η3 , (4.11)

and the matrix A is hermitian

A =

(

a1 a0

ā0 a2

)

. (4.12)

For the vielbeins we choose the following ansatz

η1 = dz1 + α1dz3

η2 = dz2 + α2dz3

η3 = udz3 .

(4.13)
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In the above expression zi are local complex coordinates (z1,2 = h1,2+iφ1,2, z3 = ln u+iφ3)

and αi are complex functions.

In terms of the above vielbeins the 2-forms defining the SU(2) structure can be written

as 5

j =
i

2
Aijηi ∧ η̄j , (4.14)

ω = i
√

det Aη1 ∧ η2 . (4.15)

The form of the z vector is determined by the massive deformation. Suppose we are

adding the superpotential W = Φ2
3 for the adjoint field Φ3 to a conformal field theory,

for example N = 4 SYM. We identify the complex coordinate ez3 = ueiφ3 with Φ3 in the

supergravity solution. From equation (2.22) we find

e2Aei(α+β) sin 2φz ∼ dW = d(u2e2iφ3) , (4.16)

so that

e2A√a3 sin 2φ = mu ,

ei(α+β) = e2iφ3 , (4.17)

where m is a constant. This automatically solves equation (4.8).

From eq. (4.9) it follows that there exists a closed 2-form

Ĵ = j +
i

2
cos 2φz ∧ z̄ (4.18)

=
i

2
Aijηi ∧ η̄j +

i

2
cos 2φa3η3 ∧ η̄3 .

Therefore, although the metric is not Kähler, we can introduce, at least locally, a general-

ized Kähler potential F

Ĵ =
i

2

∂2F

∂zi∂z̄j
dzidz̄j . (4.19)

Comparing (4.19) and (4.18), it is possible to express the functions ai in the metric

ansatz in terms of the generalized Kähler potential

Aij =
∂2F

∂zi∂z̄j
i, j = 1, 2 , (4.20)

Aijᾱj =
∂2F

∂zi∂z̄3
, (4.21)

αiAij =
∂2F

∂z̄i∂z3
, (4.22)

u2a3 cos 2φ + αiAijᾱj =
∂2F

∂z3∂z̄3
. (4.23)

5It is also possible to introduce another set of vielbeins that make the metric diagonal X1 =
√

a1η1 +
a0√
a1

η2, X2 =
√

det A√
a1

η2 and X3 = η3. The defining two-forms become j = i
2
(X1 ∧ X̄1 + X2 ∧ X̄2) and

ω = iX1 ∧ X2.
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It remains now to solve the equations involving the fluxes

e−4Ad
(

e4A cos 2φ
)

= − ∗ F5 , (4.24)

e−4Ad
(

e2A sin 2φ Imω̂
)

= cos 2φH − ∗F3 , (4.25)

[

d
( e−2A

sin 2φ
(cos2 φω̂ + sin2 φ¯̂ω)

)

+ iH
]

∧ z = 0 , (4.26)

d
(

e−2A sin 2φ Imω̂ ∧ z ∧ z̄
)

+ 2iH ∧ (j +
i

2
cos 2φz ∧ z̄) = 0 , (4.27)

1

2
e−2Ad

(

cos 2φ j2 + ij ∧ z ∧ z̄
)

+ sin 2φH ∧ Imω̂ = 0 . (4.28)

The first of the equations involving fluxes, (4.24), can be considered as a definition

of the five-form flux. To solve the other ones we introduce an ansatz for the complex

three-form which is a straightforward generalization of that in [8]

G3 = dA2 , (4.29)

with A2 = C2 − iB2 and

A2 =
2i

m
ez1+z2−z̄3[dz1 ∧ dz2 − sin2 φη1 ∧ η2] . (4.30)

The above choice solves (4.26) with the condition

ez1+z2−z̄3 = mei(α−β)

√
det A

e2A sin 2φ
, (4.31)

or, expanding the coordinates in real and imaginary part zi = hi + iφi,

eh1+h2 = m
√

det Aa3 , (4.32)

ei(α−β) = ei(φ1+φ2+φ3) . (4.33)

The meaning of this condition is that

ω̂ ∧ z =
i

m
ez1+z2+z3dz1 ∧ dz2 ∧ dz3 , (4.34)

so that SU(3) structure holomorphic three-form Ω = ω ∧ z is closed, up to a phase which

can be reabsorbed in the definition of the vielbeins ηi.

From (4.27) one obtains

{

∂
∂z̄i

(a3u
2 sin2 φ) = −αjAji ,

∂
∂zi

(a3u
2 sin2 φ) = −ᾱjĀji = −Aijᾱj ,

(4.35)

which can be further simplified, using (4.21) and (4.22), to give

{

∂
∂z̄i

(a3u
2 sin2 φ + ∂

∂z3
F ) = 0 ,

∂
∂zi

(a3u
2 sin2 φ + ∂

∂z̄3
F ) = 0 .

(4.36)
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Finally (4.28) gives
∂

∂z3
(a3u

2 sin2 φ +
∂

∂z̄3
F ) = 0 . (4.37)

For backgrounds that do not depend on φ3 we can solve all the previous equations by

taking

a3u
2 sin2 φ = − ∂

∂z3
F . (4.38)

At this point a long but straightforward computation shows that equation (4.25) is also

satisfied.

Notice that the solution is completely specified by a generalized Kähler potential F (zi)

that satisfies the condition of closure for Ω, equation (4.32). Indeed, the metric is deter-

mined by F , the fluxes by equation (4.24) and by the ansatz (4.29), φ by condition (4.38),

the warp factor A by equation (4.17) and, finally, the two phases α and β by (4.17)–(4.33).

The situation is similar to the Calabi-Yau case where the solution is determined by a Kähler

potential which satisfies the condition of closure for Ω. We see that, in this particular class

of solutions, the inclusion of fluxes does not introduce new constraints.

The equations further simplify if the metric has three U(1) isometries. This is the case

where we introduce a mass deformation in N = 4 SYM or more generally in a theory dual

to a toric Calabi-Yau. The mass term typically breaks one global symmetry of the theory,

but in the supergravity solution this breaking can be included in the phase of the G field

and does not affect the metric. We can then have a solution where F (hi) does not depend

on the angles φi, the metric has a U(1)3 isometry and the G field has a phase ei(φ1+φ2+φ3)

according to equation (4.29). In this toric cases, Ĵ can be rewritten as

Ĵ =
1

4

∂2F

∂hi∂hj
dhi ∧ dφj = d

(

1

4

∂F

∂hi
dφi

)

. (4.39)

Here we used dzi = dhi + idφi, h3 = log u. The quantities ∂F
∂hi

then play the role of

momentum map variables for the U(1)3 fibration. The PW flow belongs to this toric class

of solutions.

4.2 AdS5 solutions

We obtain AdS5 solutions by restricting to warped conical six-dimensional metrics,

ds̃2
6 = H4dr2 + r2ds2

5(y) (4.40)

where H only depends on the angular coordinates yi of the base ds5. In this way the full

10-dimensional metric

ds2
10 = e2Ads2

4 + e−2A[H4dr2 + r2ds2
5] (4.41)

factorizes to the warped AdS form

H2ds2
AdS + H−2ds2

5 , (4.42)

provided that

e2A = r2H2 . (4.43)
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Conformal invariance requires F ∼ r2, Aij ∼ r2 and αi adimensional. The correct scaling

behavior of the metric combined with equation (4.17) also requires u ∼ r3/2 and a3 ∼ 1/r.

This is a consequence of the marginality of the superpotential term Φ2
3 at the fixed point,

which in turn implies dimension 3/2 for the field Φ3
6 associated with the variable u. It is

known that, for a Kähler cone, F = 4r2 [22]. In our case, more generally,

F = r2f(y) , (4.44)

where f is a function on the five-dimensional base. The conditions for the existence of

an AdS5 solution finally require the absence of terms linear in dr in the six-dimensional

metric. This represents a further constraint on the coordinates zi and the Kähler potential

F .

All these conditions considerably simplify in the toric case. We can choose coordinates

λ, k, φi on the five-dimensional base such that

dzi = dhi + idφi = ni
dr

r
+ dvi(λ, k) + idφi , i = 1, 2

dz3 =
du

u
+ idφ3 = n3

dr

r
+

dλ

λ
+ dφ3 , n3 =

3

2
. (4.45)

The generalized Kähler potential only depends on hi, F (hi). We require n1 + n2 + n3 = 3

in order for the (3,0) holomorphic form Ω to scale as r3 (cfr equation (4.34)).

Determining the metric from J = Ĵ + (1 − cos 2φ)izz̄/2

ds2
6 =

1

4

∂2F

∂hi∂hj
dzidz̄j + (1 − cos 2φ)a3u

2dz3dz̄3 , (4.46)

and using repeatedly the condition of scale invariance

ni
∂F

∂hi
= r

∂F

∂r
= 2F , (4.47)

we obtain the condition for the absence of mixed terms in dr

dF = 2F
dr

r
+ 3u

∂F

∂u

dλ

λ
. (4.48)

This implies that

F = r2f(λ) (4.49)

and

λf ′(λ) =
3

r2
u

∂F

∂u
. (4.50)

Finally, the warp factor is determined by the dr2 term in the metric which, with simple

manipulations, can be written as

H4 = f(λ) − 3

4
λf ′(λ) . (4.51)

6This is better thought as the composite [Φ1, Φ2] at the IR fixed point.
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As an example we can reconstruct the PW solution for the IR fixed point of mas-

sive N = 4 SYM. The undeformed solution is associated with C
3 for which we choose

coordinates

ez1 = r cos θ cos ϕeiφ1 ,

ez2 = r cos θ sinϕeiφ2 ,

ez3 = r sin θeiφ3 . (4.52)

The complex coordinates for the IR fixed point are just obtained with a rescaling

ez1 = r3/4 cos θ cos ϕeiφ1 ,

ez2 = r3/4 cos θ sinϕeiφ2 ,

ez3 = r3/2 sin θeiφ3 . (4.53)

We can choose λ = sin θ and k = ϕ. The solution of the constraint (4.50) is obtained by

taking

F = cr2(1 − 2 sin2 θ) , (4.54)

from which H4 = c(1 + sin2 θ). All other quantities are consistently determined by the

equations in the previous section. We obtain for example

cos2 φ =
sin2 θ

2(1 + sin2 θ)
. (4.55)

The full PW metric can be reconstructed as

ds̃2
6 =

3

4
dr2(1 + sin2 θ) + r2

[1

2
(1 + sin2 θ)dθ2 + cos2 θdφ2 + cos2 θ(cos2 φdφ2

1 + sin2 φdφ2
2)

+
sin2 θ

2
dφ2

3 +
(cos2 θ(cos2 φdφ1 + sin2 φdφ2) + sin2 θdφ3)

2

3(1 + sin2 θ)

]

(4.56)

which is equivalent to formula (7.8) of the second paper in [8].

The moduli space of vacua of the dual gauge theory is two-dimensional and spanned

by the vacuum expectation values of the fields Φ1,2. The moduli space for D3-brane probes

of the PW solution is obtained by imposing equation (3.14)

sin 2φ =
sin θ

√

2 + sin2 θ

1 + sin2 θ
≡ 0 , (4.57)

which selects the two-dimensional sub-manifold u = r3/2 sin θ ≡ 0. On this sub-manifold

cos 2φ ≡ 1 and

Ĵ ≡ J , (4.58)

so that the moduli space seen by the probe is a two-dimensional Kähler manifold as required

by supersymmetry for N = 1 gauge theories 7.

7An explicit computation of the Kähler potential for a probe in the PW flow was performed in [16].
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It would be interesting to look for other warped AdS5 solutions of type IIB super-

gravity. The above analysis has been performed for massive deformations of N = 4 Super

Yang-Mills, thus for deformation of AdS5 × S5. However it is likely to describe also mass

deformations of N = 1 quiver gauge theories associated with more general Sasaki-Einstein

manifolds H and backgrounds of the form AdS5 × H. In quiver gauge theories, the addi-

tion of a mass term for a single adjoint field leads quite generically to an IR fixed point if

there are enough global abelian symmetries 8. This is typically the case for Sasaki-Einstein

backgrounds where massless vectors arise not only from isometries but also from RR fields.

We thus expect a large number of AdS5 solutions dual to massive deformations of confor-

mal theories. Some of them will be still described by Sasaki-Einstein backgrounds 9 but

others will be described by warped solutions with non zero G flux. At the moment, the

only explicitly known example in the latter class is PW and it would be quite interesting

to find alternative ones. The number of known Sasaki-Einstein metrics has been recently

enlarged with the discovery of the Y pq and Lpqr metrics [17]. In particular the quivers

associated with the Generalized Conifolds, which are particular cases of the Lpqr [18], have

adjoint fields and massive deformations leading to IR fixed points, which could correspond

to warped AdS5 solutions with fluxes.

5. Marginal deformations of conformal field theories

A second interesting class of SU(2) structure backgrounds is provided by the duals of

marginal deformations of conformal gauge theories.

Once again we consider the example of N = 4 SYM. It is known that there exists

a manifold of N = 1 fixed points that contains the N = 4 Yang-Mills theory [13]. The

corresponding theories can be described in N = 1 language as containing the same fields

as N = 4 SYM but with a superpotential (modulo the SU(3) global symmetry)

hTr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) + h′Tr(Φ3
1 + Φ3

2 + Φ3
3) . (5.1)

In addition to the three parameters appearing in the superpotential, we have the complexi-

fied coupling constant. There is a particular relation between the four complex parameters

gY M , h, h′, β for which the theory is superconformal [13]. The equations for the vanishing

of all beta-functions are satisfied if

∆Φi
(gY M , h, h′, β) = 1 . (5.2)

8The conditions for conformal invariance of the original theories are determined only up to free param-

eters associated with the abelian symmetries, since the latter can mix with the R-symmetry. The exact

dimensions of the chiral fields is determined using a-maximization [15]. Upon the addition of a mass term,

we should just restrict the maximization on the sub-variety where the R-charge of the massive field is one.

We thus expect a solution of the a-maximization if the original theory have enough abelian symmetries.
9Not all the mass deformations are dual to modes of the three-form G field in supergravity, as it happens

for N = 4 SYM. For a generic quiver theory, where H may have orbifold singularities, some mass deforma-

tions are dual to geometrical blowing up modes. A familiar example is provided by the N = 2 quiver gauge

theory associated with the singular Calabi-Yau C
2/Z2 × C, i.e. H = S5/Z2. A mass deformation dual to

the blow up mode leads to an IR fixed point corresponding to the conifold. In this cases, the IR fixed point

will be still of the form AdS5 × H with H a Sasaki-Einstein manifold.
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Using the obvious permutation symmetry among the Φi we conclude that we have a single

equation for four unknowns. This yields a three-dimensional complex manifold of fixed

points.

We consider here the case of the β-deformation with h′ = 0,

hTr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) , (5.3)

whose supergravity dual has been found in [7] and it will be referred as the LM solution.

The theory still preserves a U(1)× U(1) global symmetry, in addition to the R-symmetry.

The global U(1)×U(1) acts with charges (0, 1,−1) and (−1, 1, 0) on the three chiral fields

Φi. The deformation of the superpotential modifies the F-term equations and reduces the

moduli space of vacua of the theory. The F-terms read

Φ1Φ2 = e−2πiβΦ2Φ1, Φ3Φ1 = e−2πiβΦ1Φ3, Φ2Φ3 = e−2πiβΦ3Φ2 . (5.4)

The original moduli space of N = 4 SYM was parametrized by arbitrary diagonal matrices

Φi. In the β-deformed theory, we see that a diagonal matrix for, say, Φi solves the F-term

equations only if the other two Φk vanish. The mesonic moduli space is then the union of

three branches meeting at the origin. A D3-probe sees a three-dimensional moduli space

isomorphic to C
3 in the case of N = 4 SYM but only three complex lines intersecting at

the origin in the case of the β-deformed theory. It is known [19] that, for special values of

the deformation parameter where β is rational, we can have other Coulomb branch vacua

where Φi define a non-commutative torus. As usual, we do not consider in this paper

baryonic type vacua.

We will further restrict to the case where β is real. The case where β is complex can

be obtained by a further type IIB S duality. The case of real β is particularly interesting

because it can be obtained from the N = 4 solution by a T-duality. The T-duality transfor-

mation acts on the two-torus made with two U(1)×U(1) isometries of the original solution.

As we will show in the following, a T-duality on two angular directions corresponding to

isometries of C
3, or more generally of a Calabi-Yau, transforms the original SU(3) struc-

ture into an SU(2) structure satisfying the special ansatz (3.1), thus of the special form

considered in this paper.

5.1 Spinors and the action of T-duality

The generating solution technique used in [7] applies to all backgrounds with at least two

isometries. We call ϕ1,2 the two corresponding angles and gij , Bij ≡ Bεij (i, j = 1, 2) the

metric and the antisymmetric NS two-form on the T 2 spanned by ϕ1,2. The metric thus

reads

ds2
6 = gijeϕi

eϕj
+ ds̃2

4 = y2
1 + y2

2 + ds̃2
4 , (5.5)

where the one-forms eϕi
= dϕi + . . . have been used to eliminate off-diagonal terms, if

needed, and ds̃2
4 does not depend on ϕi. y1,2 correspond to a choice of vielbeins along the

T 2.
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In order to obtain new solutions, we can use the SL(2,R) subgroup of the T-duality

group O(2,2) that acts on the complexified Kähler modulus ν = B + i
√

g of the two torus

as

ν → aν + b

cν + d
. (5.6)

As argued in [7], the particular element

LM =

(

1 0

γ 1

)

(5.7)

transforms regular solutions in other completely regular solutions depending on the pa-

rameter γ. Starting with a Calabi-Yau background with two isometries and no B-field, we

obtain a new background with
√

g′ = G
√

g and B′ = γgG where G = 1/(1 + γ2g). The

T-dual solution is then

ds2
6 = Ggijeϕi

eϕj
+ ds̃2

4 = G(y2
1 + y2

2) + ds̃2
4 . (5.8)

Formulae for the explicit action of the T-duality group on various quantities are col-

lected in appendix B. We need in particular the action of T-duality on the supersymmetry

spinors. Using the formulae given in the appendix, we can show that

η1′
+ = η1

+ , (5.9)

η2′
+ = ΩT η2

+ , (5.10)

where

ΩT =
1

√

1 + γ2g
(1 + γΓϕ1ϕ2

) . (5.11)

If η0
+ is the U(1) × U(1) invariant spinor of the original CY, after T-duality we have

η1
+ = η0

+ , η2
+ = −i

1
√

1 + γ2g

(

η0
+ + γ

√
g
z

2
η0
−

)

, (5.12)

where, similarly to section 4, we have rewritten the action of the gamma-matrices in terms

of a normalized vector z

Γϕ1ϕ2
η0
+ =

√
g Γy1y2

η0
+ =

√
g

z

2
η0
− . (5.13)

The spinors (5.12) satisfy condition (3.13) and thus can be brought to the form (3.1)

η1
+ = aη+ + b

z

2
η− , η2

+ = −i(aη+ − b
z

2
η−) , (5.14)

with

η+ =
āη0

+ − b(z/2)η0
−

|η2
0 |

,

b =
−γ

√
g

1 +
√

1 + γ2g
ā ,

|a|2 =
1 +

√

1 + γ2g

2
√

1 + γ2g
|η0

+|2 , (5.15)
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where |η0
+|2 = eA. This transformation is just a rotation in the U(1) family of almost

complex structures allowed by the SU(2) structure. By comparison with the ansatz (3.2),

we can also compute

sin 2φ = − γ
√

g
√

1 + γ2g
,

cos 2φ =
1

√

1 + γ2g
. (5.16)

We want now to construct the pure spinors after the action of T-duality. These can be

easily obtained from (2.13) by tensoring the transformed spinors (5.12). It is however possi-

ble to compute directly the action of T-duality on the pure spinors using the results of [20].

This is because, via Clifford map, pure spinors can be thought as bispinors. Specializing

the action of T-duality on bispinors as given in [20] we have

T : Φ± → Φ±Ω†
T , (5.17)

where ΩT is given in (5.11) and it acts on the pure spinors by Clifford multiplication from

the right.

As the T-duality was applied to flat space (or more generally to a CY) we should start

from the standard pair of pure spinors (Φ+,Φ−) corresponding to SU(3) structure, namely

the exponentiated fundamental form and the holomorphic three-form. In our notations,

these are obtained (modulo normalization) by taking a = 1, x = −i and b = y = 0. In a

background with two isometries, if we write the metric in diagonal form

ds2
6 = x2

1 + x2
2 + y2

1 + y2
2 + zz̄ , (5.18)

where z is the normalized vector introduced in (5.13) and yi correspond to the fiber direc-

tions along which T-duality acts, Φ± read

Φ+ =
i

8
e−iJ =

i

8
ezz̄/2e−ij ,

Φ− = −1

8
z ∧ ω , (5.19)

with 10

j = x1 ∧ y1 + x2 ∧ y2 ,

ω = i(x1 + iy1) ∧ (x2 + iy2) . (5.20)

Note that, even though the physical context is different, the action of the second piece in

ΩT , which essentially amounts to taking the Hodge star along the fibers, is exactly the same

as for the maximally type-changing T-duality action discussed in [21], which exchanges e−ij

and ω. Indeed, on the forms written above it is not hard to verify that (e−ij)Γ†
y1y2

= −iω

10In determining the phase in ω we used definition (2.5) and the fact that χ0 = zη∗
0/2 = Γy1y2

η∗
0 .
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and (ω)Γ†
y1y2

= −ie−ij , so that we obtain 11

Φ+ Ω†
T =

i

8
√

1 + γ2g
ezz̄/2

[

e−ij − iγ
√

gω
]

,

Φ− Ω†
T =

−1

8
√

1 + γ2g
z ∧

[

ω − iγ
√

ge−ij
]

. (5.21)

Finally we can bring the pure spinors to the general form that has been used throughout

the paper by making use of the connection between the rotation of the four-dimensional

complex structure and the γ parameter given in (5.15) and (5.16). This amount to a

redefinition of the real two-forms

(

cos 2φ − sin 2φ

sin 2φ cos 2φ

)(

j

Reω

)

−→
(

j

Re ω

)

. (5.22)

The phases α and β are set to zero here, so we are dropping the hats on ω.

In principle we could have just stopped this discussion here, but before proceeding to

the discussion of the SU(2) structure solution, we would like to present an interpretation

of the LM transformation (5.7) in terms of Generalized Complex Geometry. The idea is

to describe the change of type of the pure spinors given by (5.21) in terms of the standard

O(2,2) action on TM ⊕T ∗M (where M is the T 2 along which we T-dualize) 12. As already

mentioned, the nontrivial part of the ΩT action is given by the Hodge star along the

fibers which in turns is conveniently captured by the Clifford action of Γy1y2
. When acting

on the forms (pure spinors) the product of gamma-matrices gives terms with full anti-

symmetrization, full contraction and partial contraction. Their three O(2,2) counterparts

are [11]:

• B-transform - a shear transformation on the cotangent bundle T ∗M which acts by

wedging the forms with an exponentiated two form and does not change the type of the

pure spinors;

• β transform - a shear transformation on the tangent bundle TM which acts by con-

tracting the forms with an exponentiated bivector and does change the type of the pure

spinors;

• SL(2) rotation A - a vector–valued one-form which acts by a contraction and a wedge.

The form of these operators is particularly simple in two dimensions:

B = y1 ∧ y2, β = ιy1
∧ ιy2

, A = −(y1 ∧ ιy2
− y2 ∧ ιy1

) , (5.23)

11We can understand the general action of Γy1y2
on e−ij and ω without referring to a particular basis

as done above. We may use the fact that these forms are self-dual when restricted to the four dimensions

transverse to the directions spanned by the complex vector z. Moreover, their respective real and imaginary

parts form a full basis of self-dual forms: (1 − j2/2), j, Reω and Imω. The star in the fiber directions

only (i.e. the action of Γ12) is a maps among self-dual forms but mixes forms of different rank. So the

transformed pure spinor will simply be a combination of (1 − j2/2), j, Reω and Imω as in (2.13).
12In principle GCG (or simply geometrical) descriptions can be problematic when a B-field with two legs

along the fibers is involved, as it is the case here. However since the latter is generated by SL(2) rotations

and is constant along the fibers we will see that the geometrical description is perfectly adequate here.

– 20 –



J
H
E
P
1
2
(
2
0
0
6
)
0
5
5

where ι denotes a contraction. Their actions on the pure spinors are as follows (we ignore

the z contribution which is inert under these actions):

B(e−ij) = y1 ∧ y2 , β(e−ij) = −x1 ∧ x2 , A(e−ij) = i(x2 ∧ y1 − x1 ∧ y2) , (5.24)

B(ω) = ix1 ∧ x2 ∧ y1 ∧ y2 , β(ω) = i , A(ω) = x1 ∧ y1 + x2 ∧ y2 . (5.25)

One can define the combined action of these operations on the pure spinors (5.19) as

eB̂Φ± := e2φ(B+β+A)Φ± .

Using that A(B + β) = (B + β)A = 0 on all the forms and (B + β + A)2Φ± = −Φ±, we

find

eB̂Φ± = [cos 2φ + sin 2φ(B + β + A)]Φ± . (5.26)

Using the explicit actions (5.24) and (5.25) on Φ+ and Φ−, we recover the form (5.21)

for the transformed pure spinors provided that we identify the parameter φ as in (5.16).

Note that ΩT does not break into series of B-transforms, β-transforms (these two do not

commute!) and SL(2) rotations. Instead its action is given by a Clifford multiplication on

pure spinors which can be seen as a type-changing “generalized B̂-transform”. While the

decomposition (5.26) was proved using a specific basis for j and ω, it is expected to hold

more generally. It would be curious to see if a similar decomposition may hold for (at least

a class of) higher-dimensional T-dualities.

5.2 The geometrical structure of the LM solution

In this section we analyze the geometry of the LM solution. We use the rescaled six-

dimensional metric ds2
6 = e−2Ads̃2

6.

The original Calabi-Yau cone for N = 4 SYM is just C
3. We choose three complex

coordinates zi = rµie
iφi representing the three adjoint scalar fields Φi. A convenient

parametrization for the zi is

z1 = r cos αei(ψ−ϕ2) ,

z2 = r sinα cos θei(ψ+ϕ1+ϕ2) ,

z3 = r sinα sin θei(ψ−ϕ1) . (5.27)

In this parametrization, the two U(1) symmetries act by shifting ϕ1 and ϕ2, respectively.

The form of the vector z can be determined by equation (5.13). By expressing the

action of Γϕ1ϕ2
in the complex basis given above we find

z ∼ dZ , Z = z1z2z3 = r3µ1µ2µ3e
3iψ . (5.28)

Notice that the complex structure on C
3 given by the coordinates zi is the one deter-

mined by the spinor η0
+. By definition, this means that it is the Clifford vacuum annihilated

by the complexified gamma-matrices associated to zi. A simple computation using the ex-

plicit parametrization (5.27) then gives the result quoted above. We can then adapt our
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metric to the four plus two structure determined by the vector z by considering the follow-

ing vielbeins

χ1 = e−iφ1

√

g

µ2
1(µ

2
2 + µ2

3)
(dz1 −

z̄2z̄3dZ

r4g
) ≡ x1 + iy1 ,

χ2 = e−iφ2

√

1 +
µ2

3

µ2
2

(

dz2 −
z̄1z̄3dZ

r4g

)

+
µ2

3e
−iφ1

µ1

√

µ2
2 + µ2

3

(

dz1 −
z̄2z̄3dZ

r4g

)

≡ x2 + iy2 ,

where

g = µ2
1µ

2
2 + µ2

2µ
3
3 + µ2

3µ
2
1 = sin2 α(cos2 α + sin2 α sin2 θ cos2 θ) .

These combine with z to give an integrable complex structure on C
3

ds2
6 =

3
∑

i=1

dzidz̄i = χ1χ̄1 + χ2χ̄2 +
dZdZ̄

r4g
≡ x2

1 + x2
2 + y2

1 + y2
2 +

dZdZ̄

r4g
. (5.29)

The metric on T 2 is simply given by the terms y2
1 + y2

2 . Explicitly

y1 = r
√

cos2 α + sin2 α sin2 θ cos2 θ(dϕ2 −
cos2 α − 2 sin2 α sin2 θ cos2 θ

cos2 α + sin2 α cos2 θ sin2 θ
dψ) ,

y2 = r sinα(dϕ1 + cos2 θdϕ2 + cos 2θdψ) .

We now perform the T-duality transformation (5.7) to the 10 dimensional metric

ds2 = r2ds2
4 +

1

r2
ds2

6 .

The original B-field is zero and the ν parameter of the two-torus is simply given by ν = i
√

g.

The six-dimensional internal metric after T-duality

ds2 = r2ds2
4 +

1

r2
ds2

ML

with its natural almost complex structure is now given by

ds2
LM = χ′

1χ̄
′
1 + χ′

2χ̄
′
2 +

dZdZ̄

r4g
≡ x2

1 + x2
2 + G(y2

1 + y2
2) +

dZdZ̄

r4g
,

χ′
i = x1 + i

√
Gyi . (5.30)

In real coordinates we can also write the metric as in [7]

ds2
LM = dr2 + r2(

3
∑

i=1

(dµ2
i + gµ2

i dφ2
i ) + 9γ2Gµ2

1µ
2
2µ

2
3dψ2) . (5.31)

The expressions for the other fields can be easily found by using the rules for T-duality

given in appendix B and read

e2A = r2 ,

eφ =
√

G ,

B2 = γ
√

gG
y1 ∧ y2

r2
,

F3 = 12γ cos α sin3 α sin θ cos θdψ ∧ dα ∧ dθ ,

F5 = 4(volAdS5 + ∗volAdS5) . (5.32)
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It is immediate to check that the vector

z =
dZ

r2√g
(5.33)

is conformally closed (equation (3.4))

d
(

e2A−ϕei(α+β) sin 2φz
)

= 0 (5.34)

with α = β = 0. From equation (2.22) we also find

dW ∼ e2A−ϕei(α+β) sin 2φz = d(−γz1z2z3) (5.35)

which exactly corresponds to the (abelianized) superpotential W ∼ Φ1Φ2Φ3 in (5.3).

The metric is not Kähler but the condition of supersymmetry (3.5) requires the exis-

tence of a conformally closed two form

d
(

e−ϕĴ
)

= d
[

e−ϕ

(

j +
i

2
cos 2φz ∧ z̄

)

]

= 0 . (5.36)

This equation is also trivially satisfied since

Ĵ =
i

2
(χ′

1χ̄
′
1 + χ′

2χ̄
′
2 +

√
Gzz̄) =

√
G(x1y1 + x2y2 +

i

2
zz̄) = eϕJN=4 . (5.37)

It is then straightforward to check that all other conditions for supersymmetry (3.6)–

(3.10) are satisfied with the definition (5.20). For this check we used the almost complex

structure defined in equation (5.30). As discussed in details in the previous section, our

supersymmetry conditions are satisfied with a specific choice of almost complex structure,

which is obtained by applying a rotation (5.15)–(5.22) to the one defined by the spinor

η0. An explicit computation shows that the result is indeed the almost complex structure

defined in formula (5.30).

We can also analyze the moduli space for probe D3 branes in this background. The

general formula (3.14) requires

sin 2φ = −γ
√

G
√

g ≡ 0 , (5.38)

or equivalently

g = µ2
1µ

2
2 + µ2

2µ
2
3 + µ2

3µ
2
1 ≡ 0 , (5.39)

which determines the three branches

zi = zj = 0, zk 6= 0 , i 6= j 6= k (5.40)

in agreement with the field theory analysis.

As already mentioned, for rational γ there are other Coulomb branch vacua. These

have been identified in [7] as n5 D5 branes wrapped on the two torus (in points where it is

not vanishing) with 1/γ units of gauge flux. These objects carry both units of D5 charge

(n5) and units of D3 charge (n5/γ) and satisfy the charge quantization condition only for
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γ rational. We can easily check that these are BPS states using conditions (2.20). For

a D5 brane wrapped on the two torus and the spinorial ansatz (3.1), the supersymmetry

conditions become ReĴ = 0 which is automatically satisfied and

sin 2φ(F − B) + cos 2φGy1 ∧ y2 = 0 (5.41)

which, given the form of the B field (5.32), is satisfied exactly by F = y1 ∧ y2/(γ
√

g).

A marginal deformation analogous to the β-deformation exists for all quiver gauge

theories associated with toric Calabi-Yau singularities. All these backgrounds have indeed

two isometries commuting with the supersymmetry generators, or equivalently, from the

field theory point of view, two U(1) global symmetries in addition to the R-symmetry.

The generating technique of [7] then determines the supergravity dual of the marginally

deformed conformal field theory. The above analysis of the geometrical structure of the

supersymmetric solution will apply to all these backgrounds with minor changes.

6. Conclusions

In this paper we started a detailed analysis of the conditions of supersymmetry for SU(2)

structure backgrounds. While our results are not the most general ones, since the solution

relies on a particular choice in the spinorial ansatz (3.1), we were able to write a very

simple set of equations for the SU(2) invariant forms and the fluxes for a very large class

of backgrounds. In particular, generalizing results in [8], we described a simple class of

complex manifolds and associated fluxes which solve the supersymmetry conditions of type

IIB and are characterized by the existence of a generalized Kähler potential.

The use of G-structures has been useful in the past not only for characterizing known

solutions but also for finding new ones. One example is the baryonic branch of the

Klebanov-Strassler solution [3]. In this paper, we studied the geometry of the PW and LM

solutions describing massive and marginal deformations of conformal theories. It would

be quite interesting to pursue further the analysis of this paper and try to find new con-

formal and non conformal backgrounds. There are various obvious directions where one

could move. For example, there should be a large number of conformal gauge theories

corresponding to warped AdS5 solutions with fluxes. We gave a possible characterization

of those solutions corresponding to massive deformations of conformal gauge theories in

section 4. PW is the only known solution and it would be interesting to find new examples.

Moreover, there exist other marginal deformations of N = 4 SYM and other conformal the-

ories beside the β-deformation. In particular, it would be interesting to find the marginal

deformation of N = 4 associated with the coupling h′ in equation (5.1).

We are only making the first steps understanding the interplay between the GCY ge-

ometry of the internal manifolds and that of moduli spaces of the dual gauge theories. Much

of the information about the solution, including the type of the deformation in the gauge

theory, is encoded in the pure spinors on the internal six-dimensional manifold. Moreover

for the case of the β-deformations, the solution generating T-duality transformation can

be seen as a type-changing generalized B̂ transform that acts on both the pure spinors and

the RR fields. The use of Generalized Complex Geometry is also a necessary ingredient in
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studying supersymmetric branes and calibration conditions in flux backgrounds [12]. This

should be particularly important in solutions with interesting topologies where BPS states

can correspond to branes wrapping non-trivial supersymmetric cycles. For example, using

wrapped D3 branes one can determine the exact dimensions of fields in duals of conformal

field theories. From this point of view, the simplicity of solutions in section 4, which are

characterized by a generalized Kähler potential, suggests that it is perhaps possible to make

a general analysis of volumes and R-charges analogous to that in [22]. Moreover, it should

be also quite straightforward to verify, using the generalized calibrations provided by the

pure spinors, that central and R-charges do not change for marginal deformations.

Finally, this paper is restricted to the study of conformal case, but our equations and

formalism have obvious applications to the non conformal case as well.

Acknowledgments

We would like to thank G. Dall’Agata, P. Grange, L. Martucci, R. Russo and A. Tomasiello

for helpful discussions. A.Z. is supported in part by INFN and MURST under contract

2005-024045-004. A.Z. thanks the GGI Center of Physics in Florence where part of this

work was done. R.M. and A.Z. are supported in part by the European Community’s Human

Potential Programme MRTN-CT-2004-005104, and M.P. by MRTN-CT-2004-512194.

A. The general conditions of supersymmetry

In this short appendix we report the condition of supersymmetry corresponding to the

most general SU(2) structure ansatz for the spinors (2.4). From equations (2.17) we obtain

the following set of differential constraints for the SU(2) invariant forms and the fluxes.

The equation for Φ− gives

d
(

e2A−ϕ(bx − ay)z
)

= 0 (A.1)

d
[

e2A−ϕ(byω̄ − axω + (bx + ay)j)z
]

+ i(bx − ay)Hz = 0 (A.2)

d
[

e2A−ϕ(bx − ay)zj2
]

− 2iHz
[

byω̄ − axω + (bx + ay)j
]

= 0 (A.3)

and that for Φ+

e−2A+ϕd
[

e2A−ϕ(ax̄ + bȳ)
]

= dA(xā + yb̄) +
eϕ

2

[

a−F1 − ia+ ∗ F5

]

(A.4)

e−2A+ϕd
[

e2A−ϕ((ax̄ − bȳ)j +
i

2
(ax̄ + bȳ)zz̄ + aȳω + bx̄ω̄)

]

(A.5)

−i(ax̄ + bȳ)H =

−dA
[

(xā − yb̄)j +
i

2
(xā + yb̄)zz̄ + yāω̄ + xb̄ω

]

+
eϕ

2

[

ia−F3 + a+ ∗ F3

]

e−2A+ϕd
[

e2A−ϕ((ax̄ + bȳ)j2 + i(ax̄ − bȳ)jzz̄ + i(aȳω + bx̄ω̄)zz̄
]

(A.6)

−2iH
[

aȳω + bx̄ω̄ + (ax̄ − bȳ)j +
i

2
(ax̄ + bȳ)zz̄

]

=

dA
[

(xā + yb̄)j2 + i(xā − yb̄)jzz̄ + i(yāω̄ + xb̄ω)zz̄
]

− eϕ
[

a−F5 − ia+ ∗ F1

]
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with a± = |a|2 + |b|2 ± (|x|2 + |y|2)
Note that the equations of motion for the RR fluxes follow from the pure spinor

equations (2.17). However in order to find a complete solution, the NS-flux equation of

motion and the Bianchi identities for the fluxes, dH = 0 and (d − H)F = 0, must still be

imposed.

B. Formulae for the T-duality

In this appendix we collect formulae for the explicit action of the T-duality group on various

quantities using [20]. The T-duality group of T 2 is O(2,2)≡ SL(2,R)× SL(2,R), which can

be represented as the set of matrices O such that OT JO = J where

J =

(

O I2×2

I2×2 O

)

. (B.1)

A matrix with two by two blocks

O =

(

A B

C D

)

(B.2)

acts on the two by two matrix E = g + B as [23]

E → (AE + B)(CE + D)−1 . (B.3)

The SL(2,R) subgroup that acts on the complexified Kähler modulus of the torus can be

parametrized as 13

O =

(

aI bε

−cε dI

)

, (B.5)

where ε is the Pauli matrix iσ2 and ad − bc = 1.

It is convenient to write

OLM = T−aOT−a (B.6)

where

O =

(

(S + R)/2 (S − R)/2

(S − R)/2 (S + R)/2

)

, (B.7)

with γ = 2a/(1 + a2) and

S + R = 2
√

1 − γ2I, S − R = −2γε (B.8)

13It is well known that the second copy of SL(2,R) acts on the complex structure of the two torus

M =

 

α β

γ δ

!

, O =

 

M 0

0 MT −1

!

, E → MEMT (B.4)

by transforming g → MgMT . This is just a change of coordinates and thus less useful for generating new

solutions.
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and T is the standard shift generator T of SL(2;R)

T−a =

(

I2×2 −aε

0 I2×2

)

.

The advantage of this parametrization is that for matrices of the form (B.7) the T-duality

transformations considerably simplify. The part of the transformation corresponding to O

is the only one that acts non trivially on the coordinates. T−a just shifts the B field and

can be easily superimposed once the action of O is known.

Consider now S,R and O as six-dimensional matrices by trivial extension R = (I4×4, R)

and S = (I4×4, S). Defining the six dimensional matrix [20]

Q =
1

2
[(S + R) + (S −R)(g6 + B6)] , (B.9)

and the operator

ΩT =
1

2

√

det B

det Q

(

1 − 1

2
AijΓij

)

,

Bij = [(R + S) + (R− S)B6)]ij ,

Aij = [(S −R)−1(S + R) + B6]
−1
ij , (B.10)

the effect of T-duality on the other fields and the supersymmetry parameters can be sum-

marized by [20]

g′6 = QT−1g6Q
−1 , (B.11)

eφ′
=

eφ

det Q
, (B.12)

F ′ =
√

det QΩT F

η1′
+ = η1

+ , (B.13)

η2′
+ = ΩT η2

+ . (B.14)

where F , as usual, is the formal sum of RR fields strength, and we also gave an expression

for the transformation of the metric alternative to (B.3).

Let us apply these formulae to our case. Starting with flat space and zero B-field, the

action of T−a shifts the value of the B-field to −a. So we apply the previous formulae for

the action of O to a background with −a B-field. By direct computation detQ = 1 + γ2g

and

ΩT =
1

√

1 + γ2g
(1 + γΓϕ1ϕ2

) . (B.15)

It is also easy to check that the transformation on the metric reproduces equation (5.31).
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